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Abstract 

Metrics are often used to compare the performance of newly developed systems with 
the performance of their predecessors. Metrics can also be used to compare the 
output of a simulator with real-world data to test the accuracy of the simulation. 
Statistical comparison of these metrics can be necessary when making such a 
determination. There are different methods of statistical comparison that are 
sensitive to the various types of underlying distribution of the metric data. 
Distribution type can affect the performance of these tests, and, fortunately, the 
distributions of many common metrics are well known. For example, mean time to 
repair (MTTR) and mean flight hours between critical failures (MFHBCF), generally 
follow a log-normal and an exponential distribution, respectively. This paper 
presents the effects of distribution type and parameters on the statistical power of 
two common goodness-of-fit tests (Kolmogorov–Smirnov and Anderson-Darling) via 
Monte Carlo simulation. 
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Introduction 

The results of a Monte Carlo simulation that calculates the statistical power of two 
common goodness-of-fit (GoF) tests are presented and analyzed in this paper. 
Various distribution types are considered, including the normal, lognormal, and 
exponential distributions. The results of this study provide required sample size as a 
function of statistical power. The presented data can be used to determine the 
minimum required sample size for a desired level of power. The simulation 
methodology can be adapted to calculate statistical power for the same distributions 
with different parameters or other distribution types. 

Goodness-of-Fit Testing 

Goodness-of-fit (GoF) testing is a technique used to determine how well a statistical 
model fits a data set. Single-sample GoF tests consider a null and an alternative 
hypothesis to confirm whether a sample could have been drawn from a population 
with a particular distribution. Multi-sample GoF tests determine whether the samples 
could have been drawn from populations with the same distribution. Thus, GoF tests 
are useful for validating whether simulation output is similar to real-world data, and 
for comparing the performance of a new system to that of a previous generation. 
Two such tests, Kolmogorov–Smirnov (KS) and Anderson-Darling (AD), are the 
subjects of discussion in this paper, and their behaviors in terms of statistical power 
are analyzed and presented. Determining statistical power is important for test 
design because it enables the designer to choose a minimum sample size required to 
detect a difference between samples (i.e., the GoF result may be too unreliable if the 
required sample size is not used for the test). 

Two-Sample KS and AD Tests 

The two-sample KS and AD tests are GoF tests used to infer whether two samples 
were drawn from populations with the same distribution. In both tests, the empirical 
distribution function (EDF) of each sample is used to calculate the test statistic. The 
EDF is a step function that steps by 1/n for each occurrence of n, as shown in Figure 
1 for the case of two normally distributed samples. If the value of the test statistic is 



2 

larger than a critical value for a given significance, or if the p-value is less than the 
given level of significance, the null hypothesis is rejected and one can infer that the 
samples were drawn from populations with dissimilar distributions. Both tests can 
accommodate equal or unequal sample sizes among the two samples being 
considered. The test statistics for the KS and AD tests are shown below, respectively, 
in Equations 1 and 2 [1]. 

Figure 1.  Empirical distribution functions of two randomly collected and normally 
distributed samples with µ and σ of 1 

𝐾𝐾𝐾𝐾 = 𝑚𝑚𝑚𝑚𝑚𝑚�𝐹𝐹𝑛𝑛1(𝑚𝑚)− 𝐺𝐺𝑛𝑛2(𝑚𝑚)� (1) 

where 𝐹𝐹𝑛𝑛1
(𝑚𝑚) and 𝐺𝐺𝑛𝑛2

(𝑚𝑚) are EDFs of the two samples. The equations used to 

determine the KS critical values for varying levels of significance are shown in 
Appendix B as a function of c(α), n

1
, and n

2
.

𝐴𝐴𝐴𝐴 =
𝑛𝑛1𝑛𝑛2
𝑁𝑁

�
�𝐹𝐹𝑛𝑛1(𝑚𝑚)− 𝐺𝐺𝑛𝑛2(𝑚𝑚)�2

𝐻𝐻𝑁𝑁(𝑚𝑚){1 −𝐻𝐻𝑁𝑁(𝑚𝑚)} 𝑑𝑑𝐻𝐻𝑁𝑁(𝑚𝑚)
∞

−∞
 (2) 

where 𝐹𝐹𝑛𝑛1(𝑚𝑚) and 𝐺𝐺𝑛𝑛2(𝑚𝑚) are EDFs of the two samples with sample sizes 𝑛𝑛1and 𝑛𝑛2,

𝑛𝑛1 + 𝑛𝑛2 = 𝑁𝑁 and 𝐻𝐻𝑁𝑁(𝑚𝑚) = �𝑛𝑛1𝐹𝐹𝑛𝑛1
(𝑚𝑚) +𝑛𝑛2𝐺𝐺𝑛𝑛2

(𝑚𝑚)�/𝑁𝑁.
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Equation 2 can be generalized in discrete form, as shown in Equation 3 [2]: 

 𝐴𝐴𝐴𝐴 =
𝑁𝑁 − 1
𝑁𝑁2 �

1
𝑛𝑛1
�ℎ𝑖𝑖

�𝑁𝑁𝐹𝐹𝑛𝑛1𝑖𝑖 − 𝑛𝑛1𝐻𝐻𝑖𝑖�
2

𝐻𝐻𝑖𝑖(𝑁𝑁 −𝐻𝐻𝑖𝑖)− 𝑁𝑁 ℎ𝑖𝑖4

𝐿𝐿

𝑖𝑖=1

+
1
𝑛𝑛2
�ℎ𝑖𝑖

�𝑁𝑁𝐹𝐹𝑛𝑛2𝑖𝑖 − 𝑛𝑛2𝐻𝐻𝑖𝑖�
2

𝐻𝐻𝑖𝑖(𝑁𝑁 −𝐻𝐻𝑖𝑖) −𝑁𝑁 ℎ𝑖𝑖4

𝐿𝐿

𝑖𝑖=1

� (3) 

 

where z
i
 is the array with length L of the distinct values of the two samples ordered 

from smallest to largest, N is the total number of data points of the two samples 
(N=n

1
+n

2
), h

i
 is the number of values in the combined samples equal to z

i
, H

i
 is the 

number of values in the combined samples less than z
i
 plus one half the number of 

values in the combined samples equal to z
i
, and F

n1i
 and F

n2i
 are the number of values 

in group n
1
 or n

2
 that are less than z

i
 plus one half the number of values in the 

specific group equal to z
i
. 

The method to determine the p-value of the two-sample AD test statistic is shown in 
Appendix B. It was adapted from reference [2]. Alternatively, a critical value can be 
calculated for a direct comparison to the test statistic when performing a hypothesis 
test. 

It should be noted that the KS test is less complex than the AD test, both on an 
intuitive and a computational level. The KS test statistic simply looks for the 
maximum distance between EDFs for the two samples along their entire range, and is 
more sensitive to discrepancies between EDFs toward the median, while the AD test 
statistic integrates over their entirety and includes a weighting term [𝐻𝐻(𝑚𝑚) ∗ (1 −
𝐻𝐻(𝑚𝑚))]−1 that places greater emphasis on the tails of the EDFs.  

Understanding KS and AD Statistical Power 
via Monte Carlo Simulation 

Statistical power is the probability of correctly rejecting the null hypothesis when the 
alternative hypothesis is true. It is dependent on sample size and also the difference 
in parameters (means and variance) between the samples being compared. Because of 
this, experiment designers must choose a minimal necessary sample size to maintain 
a minimally acceptable level of power. However, since power is sensitive to 
differences in sample distribution parameters, assigning an accurate estimation of 
power to a statistical test is often nontrivial and could require a-priori knowledge of 
sample distribution and parameters. Without this knowledge, or best estimation, one 
cannot assign a meaningful level of power to a GoF test. The statistical power of KS 
and AD tests can be analyzed for a given range of parameters and sample sizes to 
provide insight into relative adequacy of the tests. 
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Below, the powers of the KS and AD tests are calculated via Monte Carlo simulation 
for varying sample sizes and distribution parameters. Normal, lognormal, and 
exponential distributions are considered. For normal and lognormal distributions, a 
simulation parameter defined as Δµ/σ is used to observe the effect of distribution 

parameters on test power. This parameter is the difference in means between the two 
samples divided by the sample standard deviation (the standard deviation is 
assumed to be constant=1 for all cases in the simulation). It is often referred to as 
the “signal-to-noise ratio” when determining statistical power for normal and 
lognormal data. For power estimation of the exponential distribution, parameter Δµ 

is considered, where Δµ is the difference in means between the samples and      

µ=µ
o
-Δµ. For brevity, the simulation parameters Δµ/σ for normal and lognormal 

and Δµ for exponential are both referred to generally as δ in the schematic in Figure 

3.  

Since the shape of the exponential probability density function (PDF) relies on the 
mean parameter, the relative difference in means between two exponential 
distributions cannot be used alone to sufficiently determine power. In other words, 
for example, one cannot expect similar power when considering one set of 
exponential samples with means of 0.2 and 1.2 and another set with means of 4 and 
5, even though the difference between both is 1. This observation is displayed in 
Figure 2, where the relative shapes of two sets of exponential PDFs vary drastically, 
despite the same difference between means.  

Figure 2.  Exponential PDFs with means of µ = 0.2 and 1.2 and µ = 4 and 5 
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Simulation Methodology 

The method used in this paper to simulate statistical power as a function of sample 
size and δ is shown in Figure 3. The simulation starts by considering a specific 

distribution type. Then, two samples with chosen sample sizes n
1
 and n

2 
and 

parameter δ are randomly drawn. The GoF test is applied at a significance of 0.2 and 

the result of the hypothesis test is stored. This sequence is iterated for a total of 
10,000 times. Then, power is calculated by dividing the number of times the test 
rejected the null hypothesis by the total number of iterations. For example, if the null 
hypothesis is rejected 9,500 times out of 10,000 total iterations, the calculated power 
is 95 percent. This scheme is repeated for varying sample sizes from 4 through 150 
with an increment of 2, and δ from 0 through 1 with an increment of 0.1. The Matlab 

script used to perform the simulation is in Appendix C. VBA code capable of running 
the AD and KS tests is in Appendix D. 

All AD test simulations use an identical sample size for each iteration (n
1
=n

2
), 

whereas the KS simulation uses a sample size offset by 1 (n
1
=n

2
+1, N= n

1
+n

2
). Using 

this offset accounts for how the critical value of the two-sample KS test does not 
increase monotonically for increasing sample size and n

1
=n

2
, especially for small N 

[3]. This behavior does not significantly affect the results of this study, considering 
that acceptable levels of power (80 percent or greater) are generally achieved with 
N>50. However, tables in references [3] and [4] should be consulted when performing 
the KS test for N<<50 to achieve acceptable accuracy. 

Figure 3.  Monte Carlo simulation flowchart for estimating AD and KS statistical 
power 

 
 
 



6 

Simulation Results and Discussion 

The AD test is generally known to be more sensitive than KS, as shown in Figure 4, 
due to its greater emphasis on the tails of the data [1], and the results of the 
simulation in this study reaffirm this for all distributions considered. Statistical 
power is displayed in Figure 5 through Figure 8 as a function of δ and sample size. 

The x and y axes represent δ and sample size, respectively, and the color contour in 

each plot displays the corresponding level of power calculated in the simulation for a 
given δ and sample size. The legend next to each plot correlates the numeric value of 

power to the color displayed. Numeric values of power are located in Table 1 through 
Table 6 in Appendix A for all distributions except the exponential distribution with 
µ

o
=5 because its statistical power is below 0.80 for all values of sample size and δ.

Figure 4.  Simulated statistical power for AD and KS tests with normal distribution 
(µ=5, σ=1) and δ=4.5 
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Figure 5.  Simulated statistical power for normal distribution using AD (left) and KS 
(right) tests 

 
 
 

Figure 6.  Simulated statistical power for lognormal distribution using AD (left) and KS 
(right) tests 
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Figure 7.  The CNA figure quick part 

Simulated statistical power for exponential distribution with µo=1 using AD (left) and KS 
(right) tests 
 

 

Figure 8.  Simulated statistical power for exponential distribution with µo=5 using AD 
(left) and KS (right) tests 
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Summary 

The results from this study affirm that distribution type and parameters control the 
statistical power of the AD and KS tests. Larger sample sizes will generally increase 
power for normal, lognormal, and exponential distributions. The statistical power of 
exponentially distributed data depends on both the difference in means between 
samples and the values of the means when using GoF testing. Depending on 
exponential parameter µ

o
, the AD and KS tests may not be able to achieve desirable 

levels of power regardless of sample size.  
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Appendix A: Tabulated Data from AD 
and KS Simulations 

Table 1. Required sample size for given power and δ obtained from AD simulation 
with normal distribution 

δ=0.2 
 

δ=0.5 
 

δ=0.7 
 

δ=0.9 

P n 
 

P n 
 

P n 
 

P n 

80 - 
 

80 43 
 

80 22 
 

80 14 

90 - 
 

90 64 
 

90 32 
 

90 20 

95 - 
 

95 78 
 

95 40 
 

95 23 

99 - 
 

99 110 
 

99 54 
 

99 39 
 

Table 2. Required sample size for given power and δ obtained from AD simulation 
with lognormal distribution 

δ=0.2 
 

δ=0.5 
 

δ=0.7 
 

δ=0.9 

P n 
 

P n 
 

P n 
 

P n 

80 - 
 

80 41 
 

80 23 
 

80 14 

90 - 
 

90 58 
 

90 30 
 

90 19 

95 - 
 

95 76 
 

95 41 
 

95 26 

99 - 
 

99 104 
 

99 56 
 

99 36 
 

Table 3. Required sample size for given power and δ obtained from AD simulation 
with exponential distribution and µo=0 

δ=0.2 
 

δ=0.5 
 

δ=0.7 
 

δ=0.9 

P n 
 

P n 
 

P n 
 

P n 

80 - 
 

80 27 
 

80 9 
 

80 - 

90 - 
 

90 36 
 

90 13 
 

90 5 

95 - 
 

95 47 
 

95 18 
 

95 6 

99 - 
 

99 65 
 

99 26 
 

99 9 
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Table 4. Required sample size for given power and δ obtained from KS simulation 
with normal distribution 

δ=0.2 
 

δ=0.5 
 

δ=0.7 
 

δ=0.9 

P n 
 

P n 
 

P n 
 

P n 

80 - 
 

80 52 
 

80 28 
 

80 17 

90 - 
 

90 71 
 

90 38 
 

90 25 

95 - 
 

95 87 
 

95 49 
 

95 30 

99 - 
 

99 138 
 

99 67 
 

99 44 

           
 

Table 5. Required sample size for given power and δ obtained from KS simulation 
with lognormal distribution 

δ=0.2 
 

δ=0.5 
 

δ=0.7 
 

δ=0.9 

P n 
 

P n 
 

P n 
 

P n 

80 - 
 

80 53 
 

80 27 
 

80 16 

90 - 
 

90 73 
 

90 36 
 

90 23 

95 - 
 

95 92 
 

95 46 
 

95 30 

99 - 
 

99 128 
 

99 68 
 

99 45 

           
 

Table 6. Required sample size for given power and δ obtained from KS simulation 
with exponential distribution and µo=0 

δ=0.2 
 

δ=0.5 
 

δ=0.7 
 

δ=0.9 

P n 
 

P n 
 

P n 
 

P n 

80 - 
 

80 31 
 

80 11 
 

80 - 

90 - 
 

90 46 
 

90 17 
 

90 7 

95 - 
 

95 59 
 

95 21 
 

95 7 

99 - 
 

99 77 
 

99 29 
 

99 10 
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Appendix B: Calculating p-Values for 
the AD Test and Critical Values for 
the KS Test 

The method detailed below to calculate the p-value from the k-sample AD test is 
drawn from reference [2]. For the case of two samples (k=2), the method begins by 
calculating 

 𝑇𝑇 =
𝐴𝐴𝐴𝐴 − 1
𝜎𝜎𝑛𝑛

 (4) 

where  

 𝜎𝜎𝑛𝑛 = �𝑣𝑣𝑚𝑚𝑣𝑣(𝐴𝐴𝐴𝐴) = �
𝑚𝑚𝑁𝑁3 + 𝑏𝑏𝑁𝑁2 + 𝑐𝑐𝑁𝑁 + 𝑑𝑑

(𝑁𝑁 − 1)(𝑁𝑁 − 2)(𝑁𝑁 − 3) (5) 

with 

 𝑚𝑚 = (4𝑔𝑔 − 6)(𝑘𝑘 − 1) + (10 − 6𝑔𝑔)𝐻𝐻 (6) 

 𝑏𝑏 = (2𝑔𝑔 − 4)𝑘𝑘2 + 8ℎ𝑘𝑘 + (2𝑔𝑔 − 14ℎ − 4)𝐻𝐻 − 8ℎ + 4𝑔𝑔 − 6 (7) 

 𝑐𝑐 = (6ℎ + 2𝑔𝑔 − 2)𝑘𝑘2 + (4ℎ − 4𝑔𝑔 + 6)𝑘𝑘 + (2ℎ − 6)𝐻𝐻 + 4ℎ (8) 

 𝑑𝑑 = (2ℎ + 6)𝑘𝑘2 = 4ℎ𝑘𝑘 (9) 

where 

 𝐻𝐻 = �
1
𝑛𝑛𝑖𝑖

𝑘𝑘

𝑖𝑖=1

,ℎ = �
1
𝑖𝑖

𝑁𝑁−1

𝑖𝑖=1

 (10) 

and 

 𝑔𝑔 = � �
1

(𝑁𝑁 − 𝑖𝑖)𝑗𝑗

𝑁𝑁−1

𝑗𝑗=𝑖𝑖+1

𝑁𝑁−2

𝑖𝑖=1

 (11) 
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where N=n
1
+n

2
.  

Once the value of T is obtained, the value of ln(p) can be interpolated from Table 7. 
The log-transformed values of p must be used since they increase linearly with T. 
This result is then transformed to obtain p.  

Table 7. Percentiles and Log-Transformed Percentiles of the T distribution [2] 

T 0.326 0.626 1.225 1.96 2.719 3.752 
P 0.25 0.2 0.1 0.05 0.025 0.01 
ln(P) -1.386 -1.609 -2.303 -2.996 -3.689 -4.605 

 
The critical value for the two-sample KS test is  

 𝐴𝐴𝑚𝑚𝑛𝑛 = 𝑐𝑐(𝛼𝛼) ∗ �
𝑛𝑛1 + 𝑛𝑛2
𝑛𝑛1𝑛𝑛2

 (12) 

 

with values of 𝑐𝑐(𝛼𝛼) shown in Table 8. 

Table 8. KS critical value parameters for various levels of significance 

c(0.2) 1.07 
c(0.1) 1.22 
c(0.05) 1.36 
c(0.01) 1.63 
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Appendix C: Matlab Simulation 
Code 

clear all 
close all 
clc 
format long g 
  
  
numsamp=2; 
variance=1; 
w=1; 
  
for s= [4:.1:5]  
  
clearvars -EXCEPT s ADPower KSPower numsamp variance w ratio  
  
for ssize=4:2:150 
  
for k=1:10000 
  
   
x1=normrnd(s,variance,ssize,1); 
x1=sort(x1); 
x2=normrnd(5,variance,ssize,1); 
x2=sort(x2); 
xtot=sort([x1;x2]); 
xtotu=unique(sort([x1;x2])); 
l=length(unique(sort([x1;x2]))); 
  
n=length(x1); 
m=length(x2); 
tot=n+m; 
smallh=0; 
countf=0; 
countg=0; 
critical=1.07 * sqrt((n+m)/(n*m)); 
  
  
for i=1:(length(xtotu)-1) 
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smallh=0; 
countf=0; 
countg=0; 
bighcount=0; 
bigfcount=0; 
biggcount=0; 
  
%%%%%%%%%%%%%%%%%%%%%%%% start AD test  
 for j=1:length(xtot) 
   
  if xtotu(i)==xtot(j) 
   smallh=smallh+1; 
  end 
   
 end 
  
 for j=1:length(xtot) 
   
  if xtotu(i)<xtot(j)  
    
   bighcount=bighcount + 1; 
    
  end 
   
 end 
  
 bigh=bighcount + .5*smallh; 
   
  
 for j=1:length(x1) 
   
  if xtotu(i)==x1(j) 
   countf=countf+1; 
  end 
   
 end 
  
 for j=1:length(x1) 
   
  if xtotu(i)<x1(j)  
    
   bigfcount=bigfcount + 1;  
    
  end 
   
 end 
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bigf= bigfcount + .5*countf; 
  
  
 for j=1:length(x2) 
   
  if xtotu(i)==x2(j) 
   countg=countg+1; 
  end 
   
 end 
  
 for j=1:length(x2) 
   
  if xtotu(i)<x2(j)  
    
    biggcount=biggcount + 1;  
  
  end 
   
 end 
  
 bigg= biggcount + .5*countg; 
  
   
 ff(i,1)=smallh * (( (tot)*bigf -length(x1)*bigh)^2) / (bigh*(tot 
- bigh) - .25*smallh*tot); 
 gg(i,1)=smallh * (( (tot)*bigg -length(x2)*bigh)^2) / (bigh*(tot 
- bigh) - .25*smallh*tot); 
  
end 
  
 A2= (tot-1)/(tot^2) * [(1/length(x1)) * sum(ff) + (1/length(x2)) 
* sum(gg)]; 
  
g = 0; 
  
for r=1:(tot-2) 
  
 for v=(r + 1):(tot - 1) 
   
  g = g + (1 / ((tot - r) * v)); 
   
 end 
  
end 
  
T = 0; 
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for d = 1:(tot - 1) 
  
 T = T + (1 / d); 
  
end 
  
 
S = (1/n) + (1/m); 
  
a = (4 * g - 6) * (numsamp - 1) + (10 - 6 * g) * S; 
b = (2 * g - 4) * numsamp ^ 2 + 8 * T * numsamp + (2 * g - 14 * T 
- 4) * S - 8 * T + 4 * g - 6; 
c = (6 * T + 2 * g - 2) * numsamp ^ 2 + (4 * T - 4 * g + 6) * 
numsamp + (2 * T - 6) * S + 4 * T; 
d = (2 * T + 6) * numsamp ^ 2 - 4 * T * numsamp; 
  
sigma = ((a * tot ^ 3 + b * tot ^ 2 + c * tot + d) / ((tot - 1) * 
(tot - 2) * (tot - 3) * (numsamp - 1) ^ 2)) ^ 0.5; 
critval20 = 1 + sigma * (0.877 - 0.08 / ((numsamp - 1) ^ 0.5) - 
0.171666 / (numsamp - 1)); 
 
%%%%%%%%%%%%%%%%T values from table 
T25 = 0.326; 
T20 = 0.625666; 
T10 = 1.225; 
T05 = 1.96; 
T025 = 2.719; 
T01 = 3.752; 
  
T = (A2 - 1) / sigma; 
  
%%%%%%%%%%%%%%%%%%%%%%log transformed P values 
P25 = -1.386; 
p20 = -1.609; 
p10 = -2.303; 
p05 = -2.996; 
p025 = -3.689; 
p01 = -4.605; 
  
if T < T20 & T > T25 
  
 P = (((T - T25) * (p20 - P25)) / (T20 - T25)) + P25; 
  
elseif T < T10 & T > T20  
  
 P = (((T - T20) * (p10 - p20)) / (T10 - T20)) + p20; 
  
elseif T < T05 & T > T10  
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 P = (((T - T10) * (p05 - p10)) / (T05 - T10)) + p10; 
  
elseif T < T025 & T > T05  
  
 P = (((T - T05) * (p025 - p05)) / (T025 - T05)) + p05; 
  
elseif T < T01 & T > T025  
  
 P = (((T - T025) * (p01 - p025)) / (T01 - T025)) + p025; 
  
elseif T < T25  
  
 P = ((P25 - p20) / (T25 - T20)) * (T - T25) + P25; 
  
elseif T > T01  
  
 P = ((p01 - p025) / (T01 - T025)) * (T - T01) + p01; 
  
else  
 P = 9; 
  
end 
  
A2; 
P=exp(P); 
Pall(k,1)=P; 
  
counter=0; 
for v=1:k 
  
 if Pall(v,1)<.20 
  counter=counter+1; 
 end 
end 
  
ADPower(ssize-3,w,1)=counter/k; 
  
  
%%%%%%%%%%%%%%%%%%%%%%%% start KS test 
for ii=1:length(xtot) 
  
 for r=1:n 
  if xtot(ii)==x1(r) 
   cdf1(ii)=(1/n); 
   break 
  else 
   cdf1(ii)=0; 
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  end 
 end 
  
 for r=1:m 
  if xtot(ii)==x2(r) 
   cdf2(ii)=(1/m); 
   break 
  else 
   cdf2(ii)=0; 
  end 
 end 
  
end 
  
for i=2:length(cdf1) 
  
 cdf1(i)=cdf1(i)+cdf1(i-1); 
  
end 
  
for i=2:length(cdf2) 
  
 cdf2(i)=cdf2(i)+cdf2(i-1); 
  
end 
  
ks=max(abs([cdf1-cdf2])); 
  
mmax(k,1)=ks; 
  
end 
  
counter=0; 
for v=1:k 
  
 if mmax(v,1)>critical 
  counter=counter+1; 
 end 
end 
  
KSPower(ssize-3,w)=counter/k; 
ratio(w,1)=abs(s-4)/sqrt(variance); 
  
  
end 
  
w=w+1; 
s 
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end 
  
  
ADPower(2:2:end,:)=[]; 
KSPower(2:2:end,:)=[]; 
  
index=4:2:150; 
contourf(flipud(ratio),index,ADPower) 
contourf(flipud(ratio),index,KSPower) 
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Appendix D: VBA Code for AD and 
KS Tests 

Sub adtest() 
 
’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ 
’IMPORTANT NOTE:  INSERT SAMPLE DATA IN COLUMNS STARTING AT A3 AND B3 
’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’’ 
 
Dim LastRow1 As Double 
Dim LastRow2 As Double 
Dim lastrowtot As Double 
Dim r1 As Range 
Dim r2 As Range 
Dim x1() 
Dim x2() 
Dim xtot() 
Dim x1length As Double 
Dim x2length As Double 
Dim xtotlength As Double 
Dim smallh As Double 
Dim countf As Double 
Dim countg As Double 
Dim bighcount As Double 
Dim bigfcount As Double 
Dim biggcount As Double 
Dim ff() 
Dim gg() 
Dim g As Double 
Dim S As Double 
Dim T As Double 
Dim a As Double 
Dim b As Double 
Dim c As Double 
Dim d As Double 
Dim sigma As Double 
Dim significance As Double 
Dim P As Double 
Dim cdf1() 
Dim cdf2() 
Dim dcdf() 
 
ActiveSheet.Range("H3:H9999").ClearContents 
ActiveSheet.Range("I3:I9999").ClearContents 
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numsamp = 2 
 
With ActiveSheet 
  LastRow1 = .Cells(.Rows.Count, "A").End(xlUp).Row 
  x1 = Range("A3:A" & LastRow1).Value 
   
End With 
 
With ActiveSheet 
  LastRow2 = .Cells(.Rows.Count, "B").End(xlUp).Row 
  x2 = Range("B3:B" & LastRow2).Value 
   
End With 
 
x1length = Application.CountA(x1) 
x2length = Application.CountA(x2) 
xtotlength = x1length + x2length 
 
x1 = Application.Transpose(x1) 
x2 = Application.Transpose(x2) 
xtot = x1 
 
i = 1 
 
While i <= x2length 
  
 ReDim Preserve xtot(1 To x1length + i) 
 xtot(i + x1length) = x2(i) 
 i = i + 1 
 
Wend 
 
xtot = Application.Transpose(xtot) 
Sheets("AD test").Range("H3:H" & xtotlength + 2).Value = xtot 
Range("H3:H" & xtotlength + 2).Sort key1:=Range("H3"), 
order1:=xlAscending, Header:=xlNo 
xtot = Range("H3:H" & xtotlength + 2).Value 
xtot = Application.Transpose(xtot) 
ActiveSheet.Range("H2:H" & (2 + xtotlength)).AdvancedFilter 
Action:=xlFilterCopy, CopyToRange:=ActiveSheet.Range("I2"), 
Unique:=True 
 
With ActiveSheet 
  lastrowtot = .Cells(.Rows.Count, "I").End(xlUp).Row 
  xtotu = Range("I3:I" & lastrowtot).Value 
   
 
End With 
xtotulength = Application.CountA(xtotu) 
xtotu = Application.Transpose(xtotu) 
'MsgBox xtotlength 
 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''' 
i = 1 
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While i <= (xtotulength - 1) 
 
 
ReDim Preserve ff(1 To i) 
ReDim Preserve gg(1 To i) 
 
smallh = 0 
countf = 0 
countg = 0 
bighcount = 0 
bigfcount = 0 
biggcount = 0 
 
 
 
 For j = 1 To xtotlength 
 
  If xtotu(i) = xtot(j) Then 
   
   smallh = smallh + 1 
    
  End If 
   
 Next 
  
  
 For o = 1 To xtotlength 
  
  If xtotu(i) < xtot(o) Then  
   bighcount = bighcount + 1 
    
  End If 
   
 Next 
  
 bigh = bighcount + 0.5 * smallh 
  
  
  
 For r = 1 To x1length 
  
  If xtotu(i) = x1(r) Then 
   countf = countf + 1 
  End If 
   
 Next 
  
 For v = 1 To x1length 
  
  If xtotu(i) < x1(v) Then 
   bigfcount = bigfcount + 1 
  End If 
   
 Next 
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 bigf = bigfcount + 0.5 * countf 
  
 For w = 1 To x2length 
  
  If xtotu(i) = x2(w) Then 
   countg = countg + 1 
  End If 
   
 Next 
  
 For q = 1 To x2length 
  
  If xtotu(i) < x2(q) Then 
   biggcount = biggcount + 1 
    
  End If 
   
 Next 
  
 bigg = biggcount + 0.5 * countg 
  
  
 ff(i) = smallh * ((xtotlength * bigf - x1length * bigh) ^ 2 / (bigh 
* (xtotlength - bigh) - 0.25 * smallh * tot)) 
 gg(i) = smallh * ((xtotlength * bigg - x2length * bigh) ^ 2 / (bigh 
* (xtotlength - bigh) - 0.25 * smallh * tot)) 
  
i = i + 1 
 
Wend 
    
A2 = ((xtotlength - 1) / (xtotlength ^ 2)) * ((1 / x2length) * 
Application.WorksheetFunction.Sum(ff) + (1 / x2length) * 
Application.WorksheetFunction.Sum(gg)) 
   
'''''''''''''''''''''''''''''''''''' critical value 
g = 0 
 
For i = 1 To (xtotlength - 2) 
  
 For j = (i + 1) To (xtotlength - 1) 
   
  g = g + (1 / ((xtotlength - i) * j)) 
   
 Next 
  
Next 
 
T = 0 
 
For d = 1 To (xtotlength - 1) 
  
 T = T + (1 / d) 
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Next 
 
S = 0 
S = 1 / x1length + 1 / x2length 
 
a = (4 * g - 6) * (numsamp - 1) + (10 - 6 * g) * S 
b = (2 * g - 4) * numsamp ^ 2 + 8 * T * numsamp + (2 * g - 14 * T - 
4) * S - 8 * T + 4 * g - 6 
c = (6 * T + 2 * g - 2) * numsamp ^ 2 + (4 * T - 4 * g + 6) * numsamp 
+ (2 * T - 6) * S + 4 * T 
d = (2 * T + 6) * numsamp ^ 2 - 4 * T * numsamp 
 
 
 
sigma = ((a * xtotlength ^ 3 + b * xtotlength ^ 2 + c * xtotlength + 
d) / ((xtotlength - 1) * (xtotlength - 2) * (xtotlength - 3) * 
(numsamp - 1) ^ 2)) ^ 0.5 
critval25 = 1 + sigma * (0.675 - 0.245 / ((numsamp - 1) ^ 0.5) - 
0.105 / (numsamp - 1)) 
critval20 = 1 + sigma * (0.877 - 0.08 / ((numsamp - 1) ^ 0.5) - 
0.171666 / (numsamp - 1)) 
critval10 = 1 + sigma * (1.281 + 0.25 / ((numsamp - 1) ^ 0.5) - 0.305 
/ (numsamp - 1)) 
critval05 = 1 + sigma * (1.645 + 0.678 / ((numsamp - 1) ^ 0.5) - 
0.362 / (numsamp - 1)) 
critval025 = 1 + sigma * (1.96 + 1.149 / ((numsamp - 1) ^ 0.5) - 
0.391 / (numsamp - 1)) 
critval01 = 1 + sigma * (2.326 + 1.822 / ((numsamp - 1) ^ 0.5) - 
0.396 / (numsamp - 1)) 
    
 
'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''P 
value computation 
 
'''''''''''''''''T values from table 
T25 = 0.326 
T20 = 0.625666 
T10 = 1.225 
T05 = 1.96 
T025 = 2.719 
T01 = 3.752 
 
T = (A2 - 1) / sigma 
 
'''log transformed P values 
P25 = -1.386 
p20 = -1.609 
p10 = -2.303 
p05 = -2.996 
p025 = -3.689 
p01 = -4.605 
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If T < T20 And T > T25 Then 
 
 P = (((T - T25) * (p20 - P25)) / (T20 - T25)) + P25 
 
ElseIf T < T10 And T > T20 Then 
 
 P = (((T - T20) * (p10 - p20)) / (T10 - T20)) + p20 
  
ElseIf T < T05 And T > T10 Then 
 
 P = (((T - T10) * (p05 - p10)) / (T05 - T10)) + p10 
  
ElseIf T < T025 And T > T05 Then 
 
 P = (((T - T05) * (p025 - p05)) / (T025 - T05)) + p05 
  
ElseIf T < T01 And T > T025 Then 
 
 P = (((T - T025) * (p01 - p025)) / (T01 - T025)) + p025 
  
ElseIf T < T25 Then 
 
 P = ((P25 - p20) / (T25 - T20)) * (T - T25) + P25 
  
ElseIf T > T01 Then 
  
 P = ((p01 - p025) / (T01 - T025)) * (T - T01) + p01 
  
  
Else: P = 9 
  
 
End If 
 
P = Exp(P) 
 
'''''''''''''''''''''''''''''''''' 
 
MsgBox "Anderson Darling Test Results" & vbNewLine & vbNewLine & 
"Test statistic value: " & A2 & vbNewLine & vbNewLine & "Critical 
value (0.25 significance): " & critval25 & vbNewLine & "Critical 
value (0.20 significance): " & critval20 & vbNewLine & "Critical 
value (0.10 significance): " & critval10 & vbNewLine & "Critical 
value (0.05 significance): " & critval05 & vbNewLine & "Critical 
value (0.025 significance): " & critval025 & vbNewLine & "Critical 
value (0.01 significance): " & critval01 & vbNewLine & vbNewLine & "P 
value = " & Format(P, "0.0000000000000") 
 
 
'''''''''''''''''''''''''''''''''' 
 
If A2 < critval25 Then 
 h25 = "accept" 
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 Else 
  h25 = "reject" 
  
End If 
 
If A2 < critval20 Then 
 h20 = "accept" 
 Else 
 h20 = "reject" 
  
End If 
 
If A2 < critval10 Then 
 h10 = "accept" 
 Else 
 h10 = "reject" 
  
End If 
 
If A2 < critval05 Then 
 h05 = "accept" 
 Else 
 h05 = "reject" 
  
End If 
 
If A2 < critval025 Then 
 
 h025 = "accept" 
 Else 
 h025 = "reject" 
  
End If 
 
If A2 < critval01 Then 
 
 h01 = "accept" 
 Else 
 h01 = "reject" 
  
End If 
 
 
MsgBox "Anderson Darling Test Results" & vbNewLine & vbNewLine & "At 
0.25 significance, " & h25 & " the null hypothesis." & vbNewLine & 
"At 0.20 significance, " & h20 & " the null hypothesis." & vbNewLine 
& "At 0.10 significance, " & h10 & " the null hypothesis." & 
vbNewLine & "At 0.05 significance, " & h05 & " the null hypothesis." 
& vbNewLine & "At 0.025 significance, " & h025 & " the null 
hypothesis." & vbNewLine & "At 0.01 significance, " & h01 & " the 
null hypothesis." 
 
'''''''''''''' start KS test 
For ii = 1 To xtotlength 
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 For r = 1 To x1length 
  If xtot(ii) = x1(r) Then 
   ReDim Preserve cdf1(1 To ii) 
   cdf1(ii) = (1 / x1length) 
   Exit For 
  Else 
   ReDim Preserve cdf1(1 To ii) 
   cdf1(ii) = 0 
  End If 
 Next r 
  
 For r = 1 To x2length 
  If xtot(ii) = x2(r) Then 
   ReDim Preserve cdf2(1 To ii) 
   cdf2(ii) = (1 / x1length) 
   Exit For 
  Else 
   ReDim Preserve cdf2(1 To ii) 
   cdf2(ii) = 0 
  End If 
 Next r 
  
Next ii 
 
 
For i = 2 To Application.CountA(cdf1) 
  
 cdf1(i) = cdf1(i) + cdf1(i - 1) 
  
Next i 
 
  
For i = 2 To Application.CountA(cdf2) 
  
 cdf2(i) = cdf2(i) + cdf2(i - 1) 
  
Next i 
 
For i = 1 To Application.CountA(cdf1) 
 
 ReDim Preserve dcdf(1 To i) 
 dcdf(i) = Abs(cdf1(i) - cdf2(i)) 
  
Next i 
 
ks = Application.Max(dcdf) 
 
critical20 = 1.07 * ((x1length + x2length) / (x1length * x2length)) ^ 
0.5 
critical10 = 1.22 * ((x1length + x2length) / (x1length * x2length)) ^ 
0.5 
critical05 = 1.36 * ((x1length + x2length) / (x1length * x2length)) ^ 
0.5 
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critical01 = 1.63 * ((x1length + x2length) / (x1length * x2length)) ^ 
0.5 
 
If ks < critical20 Then 
 h20 = "accept" 
 Else 
 h20 = "reject" 
  
End If 
 
If ks < critical10 Then 
 h10 = "accept" 
 Else 
 h10 = "reject" 
  
End If 
 
If ks < critical05 Then 
 h05 = "accept" 
 Else 
 h05 = "reject" 
  
End If 
 
If ks < critical01 Then 
 h01 = "accept" 
 Else 
 h01 = "reject" 
  
End If 
 
 
MsgBox "KS Test Results" & vbNewLine & vbNewLine & "Test statistic 
value: " & ks & vbNewLine & vbNewLine & "At 0.20 significance, " & 
h20 & " the null hypothesis." & vbNewLine & "At 0.10 significance, " 
& h10 & " the null hypothesis." & vbNewLine & "At 0.05 significance, 
" & h05 & " the null hypothesis." & vbNewLine & "At 0.01 
significance, " & h01 & " the null hypothesis." 
 
 
End Sub 
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